Next-Generation Space-Based IR NEO Surveys

Amy Mainzer

Jet Propulsion Laboratory
California Institute of Technology

Target NEO Workshop

Why Having the Right Targets Matters

- Without being able to precisely constrain rendezvous dates and Δv , it is very difficult to derive the rest of the requirements for a mission
 - Having only one possible rendezvous date in a 5-10 year window drives cost and schedule
 - Changing requirements increases cost and risk

Finding A Target

- Although ~7800 NEOs are known today, only a few are accessible
 - Long synodic periods of most NEOs means that there are few opportunities for follow-up that could improve orbits before 2025 timeframe
 - NEOs discovered near opposition from today onward are unlikely to be accessible with low ΔV in 2025
 - Many of the potential targets have only visible magnitudes, which leads to high uncertainties in diameter
 - With NEOWISE, preliminary pV ranges from 1-60%
 - An object with H=24 could be anywhere from 36-475m in diameter
 - Many NEOs are effectively lost due to short observational arcs:
 - 1999 AO10: observational arc of only 33 days -> basically lost now, and only chances for follow-up are in 2013 @V~24.5 or 2019 @V~23 before 2026 rendezvous with huge astrometric uncertainty
 - Need really big telescope to go deep with large enough FOV to find it: very difficult, if not impossible

The Case for Space

- By observing from space, we can reach regions of the sky that are inaccessible from the ground
- This facilitates finding an NEO that will be at the right place in 2025 long synodic periods -> likely to be on the other side of the solar system for the next decade
- Space-based IR surveys have
 - No weather
 - No day/night
 - No seeing
 - No moon
 - Survey can be optimized to find low ∆v targets

The Case for IR

- IR data yield characterization:
 - -Diameters
 - -With visible data, albedos
 - -Fraction of population that is of cometary origin
 - -Thermal lightcurves: shape, rotational state
 - Thermal inertia, surface properties (roughness), better estimates of density, mass, Yarkovsky force
 - •Sample is independent: capable of discovering new NEOs
 - Not biased against low albedo NEOs which may be resource-rich (water, other volatiles)

Important Considerations for Space-Based IR Surveys

- A next-generation IR survey needs to be capable of doing its own follow-up:
 - Needs to produce observational arcs long enough to allow object to be found reliably
- Important because survey will likely look in parts of the sky that are inaccessible from ground (solar elongations <~70°)
- Pipeline software is CRITICAL: must adequately characterize artifacts (latent images, cosmic rays, optical ghosts, instrumental signatures, astrometric distortion)
 - Accurate moving object detection absolutely dependent on this
 - NEOWISE: survey operations began 1/14/10, first mass tracklet delivery to Minor Planet Center began 3/8/10.
- Launch is always a risk, but solution is use a reliable rocket (e.g. Delta II is 99% reliable)
- Advantage of space-based survey is that it can be precisely optimized to find NEOs

NEOCam: The Near-Earth Object Camera

- Discovery Mission Proposal
 - PI: A. Mainzer; partners: IPAC, Ball, Teledyne, Rochester
 - Submitted to Discovery 2006, not selected
 - Submitted to Discovery 2010, under consideration
- Science Objectives:
 - Study the origins and evolution of the NEOs,
 MBAs and comets
 - Assess the present-day risk of NEO impact
- NEOCam achieves multiple NASA goals by
 - Addressing fundamental issues in Solar System science:
 - NEO origins and evolution
 - Chronology of breakups in Main Belt
 - Origins and evolution of comets
 - Precisely quantifying PHO impact hazard.
 Detect and characterize 2/3 of all PHOs >140 m in diameter in 4 years
 - Identifying and characterizing asteroids as destinations for human exploration

NEOCam

- Dual-channel imager operating in a single step-and-stare survey mode:
 - 50 cm telescope
 - Two 16 megapixel HgCdTe focal planes at 4-5.4 and 6-10.3 μm simultaneously imaged
 - Detectors & optics <u>passively</u> cooled
 - 23/7 science ops, 13GB/day (compressed)
- 4 year Mission, launch 2016
- Earth-Sun L1 orbit
- Can send NEOCam into orbits interior to Earth
 - This speeds up discovery rates, but increases cost

Summary

- A next-generation space-based survey can find and characterize new low ∆v targets
- More targets with good orbits will allow requirements definition
 - Saves cost and minimizes risk