1. NEOs show a range of diversity in physical characteristics of interest for human exploration
 - Some useful constraints exist based on data in hand
 - Dynamical studies suggest range of proximity operations options exist

2. Characterization of candidate NEO targets for human exploration must (should?) include:
 - Internal structure/regolith properties as function of various parameters (context of anchoring)
 - Dust/regolith properties/dynamics (context of nuisance/hazard, response to interaction)
 - Activity/debris/satellites (context of nuisance/hazard, response to interaction)
 - Composition (context of toxicity/collection/handling)
 - Rotational characteristics (context of overall suitability)
 - Physical properties: size/shape/geology (context of operations)
 - Gravity field (context of operations)
 - Well-constrained orbit

3. Some of these properties are known in a statistical sense for the NEO population (rotation rates/thermal inertia, for instance)

4. Some of these properties are measurable from Earth/near Earth, others will require in situ measurements
 - We lack intuition about “µ-gravity geology”

5. Choice NEO targets will *likely* be driven by accessibility vs. other factors → trade-off between size and rotation rate
Session Open Questions

1. Are there any NEOs for which we have sufficient knowledge right now to send astronauts (assuming they were on suitable orbits)?

2. Can the set of necessary measurements to ensure safe and meaningful human exploration of NEOs be obtained without targeted in-situ mission(s)? (i.e. SMD vs. ESMD missions)

3. Can the required in-situ measurements be made on asteroids other than the ones to be visited by the astronauts?

4. When must the NEOs be characterized to most effectively influence mission/instrument development?