Searching for Asteroids

Joseph Scott Stuart

Target NEO Workshop

February 2011

This work is sponsored by the National Aeronautics and Space Administration (NRA No. NNH06ZDA001N, 06-NEO06-0001) and the United States Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.
Asteroid Search at ETS

Experimental Test Site (ETS), Socorro, NM

Lincoln developed CCD technology
- Frame transfer
- Low readout noise
- Back illuminated
- 1960x2560
- 1024x1024

GTS-2 (GEODSS) Telescope
LINEAR Detection System

Input Data → Registration → Background Suppression Normalization → Binary Quantization → Clustering & Velocity Matched Filtering → Detection List

Composite of 5 Raw Discovery Frames
Detection Software Demo
Sky Coverage: One Month

March 2008

RA

DEC

Single night bands

Ecliptic bands

Total Good–Weather–Equivalent Integration Time(s)
Equivalent Coverage Depth (Vμ or SNR=6.0 σμm)
Sky Coverage: One Year

Total Good-Weather Equivalent Integration Time (s)
Equivalent Coverage Depth (v/m of SNR=5.0, 140s)

2007

RA
DEC
Where to Find Near-Earth Asteroids

- **Opposition region:**
 - Good illumination
 - Simpler orbit determination
 - Night-time accessible

- **Sweet-spots:**
 - Higher density of NEOs
 - Complex target motion
 - Twilight or space-based observations

Plot prepared by the Minor Planet Center (2010 Oct 4).
Closing

- Discovering asteroids requires finding a dim, moving object against a cluttered background
- A good strategy is to maximize sky coverage and repeat every 2 weeks
- Lots of constraints:
 - Night time, twilight
 - Moon
 - Atmosphere (minimize airmass)
 - Weather