Space-based NEO Detection and Tracking: NEOWISE and Beyond

Amy Mainzer
Jet Propulsion Laboratory
California Institute of Technology

Target NEO Workshop
Salient Features

- 4 imaging channels covering 3 - 25 microns wavelength
- 40 cm telescope operating at <17K
- Two stage solid hydrogen cryostat
- Delta launch from Vandenberg: 14 Dec 2009
- Sun-synchronous 6am/6pm 500km orbit
- Scan mirror provides efficient mapping
- Cryogen exhausted October, 2010 as planned
- PI: Ned Wright, UCLA

Science

- Sensitive all sky survey with 8X redundancy
 - Find the most luminous galaxies in the universe
 - Find the closest stars to the sun
 - Provide an important catalog for JWST
 - Study darkest asteroids & comets
Value of IR Asteroid Data

• The total flux of an asteroid, integrated over frequency and angle, gives the power intercepted from the Sun and thus the diameter.

• The range in optical albedo (Stuart & Binzel, 2004) corresponds to more than a factor of 5 in diameter, for the same (reflected) optical flux.

2.3% albedo, 2.6 km diameter 63% albedo, 0.5 km diameter

• The range in IR emission due to absorbed and reradiated sunlight for a given diameter asteroid is much smaller (Walker 2003).

• With both IR & optical data the diameter and albedo are well determined.
 – Albedo also provides an estimate of asteroid composition and density, hence mass.
 – Asteroid mass is essential for hazard assessment.
NEOWISE: An Enhancement to WISE

• The baseline WISE mission only identifies previously known solar system objects – WISE IS NOT A DEDICATED ASTEROID MISSION

• NEOWISE
 – Funded by NASA Planetary Science Division
 – Creates an archive of individual epoch images + a tool for accessing them, allowing moving objects discovered after WISE catalog production to be identified retroactively
 – Permits the discovery of new asteroids with WISE
 • Tracklets are delivered to Minor Planet Center within 10 days
 • WISE Moving Object Pipeline (WMOPS) derived from PS MOPS
 – Run 2x/week
 – Proposed augmentation will allow for final reprocessing at end of survey
NEOWISE Team

- A. Mainzer (PI)
- James Bauer (JPL)
- Roc Cutri (IPAC)
- John Dailey (IPAC)
- Tommy Grav (Johns Hopkins)
- Robert Jedicke (University of Hawaii)
- Bob McMillan (University of Arizona)
- Joe Masiero (JPL/NASA Postdoctoral Fellow)
- Dave Tholen (University of Hawaii)
- Russ Walker (MIRA)
- Students! (10 so far)
New NEOs
Known NEOs
New Comets
Known Comets
NEOWISE Results to Date

• >157,000 objects observed, ~34,000 discoveries

• >585 NEOs observed to date, 135 discoveries (incl. 18 PHAs)

• ~1800 Trojans observed, both L4 and L5 covered

• 123 comets observed, 20 discoveries (16 named WISE, four named for other observatories)

• 18 Centaurs and SDOs observed

• NEOWISE was leading observer of minor planets in 2010
NEOs

- NEOWISE has observed 585 NEOs to date, 123 comets
 - Have derived preliminary size and albedo distributions for NEOs, as well as cometary fraction
- Great advantage of NEOWISE is that survey is uniform
 - No weather
 - No day/night
 - No seeing
 - Sample is independent: capable of discovering new NEOs
 - Not biased against dark NEOs
 - All sky coverage

2010 GM23: observed @ 3 lunar distances, V~17
NEO Characterization

- NEOWISE data will yield
 - Fraction of population that is high inclination
 - Fraction of population that is dark
 - Fraction of population that is of cometary origin
 - Lightcurves in thermal
 - Can get shapes with optical lightcurves and radar
 - Get rotational pole, thermal inertia, Yarkovsky force
Examples

• 2010 DM56 (NEOWISE discovery)
 – H=20.5 indicates D~150-470 m, but thermal fits to NEOWISE data give
 – D=900 m with pV = 1.5%
• 2010 KH (NEOWISE discovery)
 – H=20.1 implies D~190-590 m, but thermal fits give
 – D=1 km, pV=2%
• 2006 JT6
 – H=19.3 implies D~270-840 m, but thermal fits give
 – D=2.2 km, pV=1%
Summary

• NEOWISE has yielded a treasure trove of new information about minor planets that will keep the community busy for decades

• NEOWISE demonstrates the power of space-based IR surveys to rapidly discover and characterize large numbers of asteroids & comets